328 research outputs found

    Evidence for an evolutionary antagonism between Mrr and Type III modification systems

    Get PDF
    The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases

    Universal properties of correlation transfer in integrate-and-fire neurons

    Full text link
    One of the fundamental characteristics of a nonlinear system is how it transfers correlations in its inputs to correlations in its outputs. This is particularly important in the nervous system, where correlations between spiking neurons are prominent. Using linear response and asymptotic methods for pairs of unconnected integrate-and-fire (IF) neurons receiving white noise inputs, we show that this correlation transfer depends on the output spike firing rate in a strong, stereotyped manner, and is, surprisingly, almost independent of the interspike variance. For cells receiving heterogeneous inputs, we further show that correlation increases with the geometric mean spiking rate in the same stereotyped manner, greatly extending the generality of this relationship. We present an immediate consequence of this relationship for population coding via tuning curves

    Motion corrected fetal body magnetic resonance imaging provides reliable 3D lung volumes in normal and abnormal fetuses

    Get PDF
    Objectives: To calculate 3D-segmented total lung volume (TLV) in fetuses with thoracic anomalies using deformable slice-to-volume registration (DSVR) with comparison to 2D-manual segmentation. To establish a normogram of TLV calculated by DSVR in healthy control fetuses. Methods: A pilot study at a single regional fetal medicine referral centre included 16 magnetic resonance imaging (MRI) datasets of fetuses (22–32 weeks gestational age). Diagnosis was CDH (n = 6), CPAM (n = 2), and healthy controls (n = 8). Deformable slice-to-volume registration was used for reconstruction of 3D isotropic (0.85 mm) volumes of the fetal body followed by semi-automated lung segmentation. 3D TLV were compared to traditional 2D-based volumetry. Abnormal cases referenced to a normogram produced from 100 normal fetuses whose TLV was calculated by DSVR only. Results: Deformable slice-to-volume registration-derived TLV values have high correlation with the 2D-based measurements but with a consistently lower volume; bias −1.44 cm3 [95% limits: −2.6 to −0.3] with improved resolution to exclude hilar structures even in cases of motion corruption or very low lung volumes. Conclusions: Deformable slice-to-volume registration for fetal lung MRI aids analysis of motion corrupted scans and does not suffer from the interpolation error inherent to 2D-segmentation. It increases information content of acquired data in terms of visualising organs in 3D space and quantification of volumes, which may improve counselling and surgical planning

    What brain abnormalities can magnetic resonance imaging detect in foetal and early neonatal spina bifida: a systematic review

    Get PDF
    PURPOSE: Open spina bifida (OSB) encompasses a wide spectrum of intracranial abnormalities. With foetal surgery as a new treatment option, robust intracranial imaging is important for comprehensive preoperative evaluation and prognostication. We aimed to determine the incidence of infratentorial and supratentorial findings detected by magnetic resonance imaging (MRI) alone and MRI compared to ultrasound. METHODS: Two systematic reviews comparing MRI to ultrasound and MRI alone were conducted on MEDLINE, EMBASE, and Cochrane databases identifying studies of foetal OSB from 2000 to 2020. Intracranial imaging findings were analysed at ≤ 26 or > 26 weeks gestation and neonates (≤ 28 days). Data was independently extracted by two reviewers and meta-analysis was performed where possible. RESULTS: Thirty-six studies reported brain abnormalities detected by MRI alone in patients who previously had an ultrasound. Callosal dysgenesis was identified in 4/29 cases (2 foetuses ≤ 26 weeks, 1 foetus under any gestation, and 1 neonate ≤ 28 days) (15.1%, CI:5.7-34.3%). Heterotopia was identified in 7/40 foetuses ≤ 26 weeks (19.8%, CI:7.7-42.2%), 9/36 foetuses > 26 weeks (25.3%, CI:13.7-41.9%), and 64/250 neonates ≤ 28 days (26.9%, CI:15.3-42.8%). Additional abnormalities included aberrant cortical folding and other Chiari II malformation findings such as lower cervicomedullary kink level, tectal beaking, and hypoplastic tentorium. Eight studies compared MRI directly to ultrasound, but due to reporting inconsistencies, it was not possible to meta-analyse. CONCLUSION: MRI is able to detect anomalies hitherto underestimated in foetal OSB which may be important for case selection. In view of increasing prenatal OSB surgery, further studies are required to assess developmental consequences of these findings

    Incremental Mutual Information: A New Method for Characterizing the Strength and Dynamics of Connections in Neuronal Circuits

    Get PDF
    Understanding the computations performed by neuronal circuits requires characterizing the strength and dynamics of the connections between individual neurons. This characterization is typically achieved by measuring the correlation in the activity of two neurons. We have developed a new measure for studying connectivity in neuronal circuits based on information theory, the incremental mutual information (IMI). By conditioning out the temporal dependencies in the responses of individual neurons before measuring the dependency between them, IMI improves on standard correlation-based measures in several important ways: 1) it has the potential to disambiguate statistical dependencies that reflect the connection between neurons from those caused by other sources (e. g. shared inputs or intrinsic cellular or network mechanisms) provided that the dependencies have appropriate timescales, 2) for the study of early sensory systems, it does not require responses to repeated trials of identical stimulation, and 3) it does not assume that the connection between neurons is linear. We describe the theory and implementation of IMI in detail and demonstrate its utility on experimental recordings from the primate visual system

    A spatio-temporal atlas of the developing fetal brain with spina bifida aperta

    Get PDF
    Background: Spina bifida aperta (SBA) is a birth defect associated with severe anatomical changes in the developing fetal brain. Brain magnetic resonance imaging (MRI) atlases are popular tools for studying neuropathology in the brain anatomy, but previous fetal brain MRI atlases have focused on the normal fetal brain. We aimed to develop a spatio-temporal fetal brain MRI atlas for SBA. Methods: We developed a semi-automatic computational method to compute the first spatio-temporal fetal brain MRI atlas for SBA. We used 90 MRIs of fetuses with SBA with gestational ages ranging from 21 to 35 weeks. Isotropic and motion-free 3D reconstructed MRIs were obtained for all the examinations. We propose a protocol for the annotation of anatomical landmarks in brain 3D MRI of fetuses with SBA with the aim of making spatial alignment of abnormal fetal brain MRIs more robust. In addition, we propose a weighted generalized Procrustes method based on the anatomical landmarks for the initialization of the atlas. The proposed weighted generalized Procrustes can handle temporal regularization and missing annotations. After initialization, the atlas is refined iteratively using non-linear image registration based on the image intensity and the anatomical land-marks. A semi-automatic method is used to obtain a parcellation of our fetal brain atlas into eight tissue types: white matter, ventricular system, cerebellum, extra-axial cerebrospinal fluid, cortical gray matter, deep gray matter, brainstem, and corpus callosum. Results: An intra-rater variability analysis suggests that the seven anatomical land-marks are sufficiently reliable. We find that the proposed atlas outperforms a normal fetal brain atlas for the automatic segmentation of brain 3D MRI of fetuses with SBA. Conclusions: We make publicly available a spatio-temporal fetal brain MRI atlas for SBA, available here: https://doi.org/10.7303/syn25887675. This atlas can support future research on automatic segmentation methods for brain 3D MRI of fetuses with SBA

    Beyond Statistical Significance: Implications of Network Structure on Neuronal Activity

    Get PDF
    It is a common and good practice in experimental sciences to assess the statistical significance of measured outcomes. For this, the probability of obtaining the actual results is estimated under the assumption of an appropriately chosen null-hypothesis. If this probability is smaller than some threshold, the results are deemed statistically significant and the researchers are content in having revealed, within their own experimental domain, a “surprising” anomaly, possibly indicative of a hitherto hidden fragment of the underlying “ground-truth”. What is often neglected, though, is the actual importance of these experimental outcomes for understanding the system under investigation. We illustrate this point by giving practical and intuitive examples from the field of systems neuroscience. Specifically, we use the notion of embeddedness to quantify the impact of a neuron's activity on its downstream neurons in the network. We show that the network response strongly depends on the embeddedness of stimulated neurons and that embeddedness is a key determinant of the importance of neuronal activity on local and downstream processing. We extrapolate these results to other fields in which networks are used as a theoretical framework

    Label-Set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation

    Get PDF
    Deep neural networks have increased the accuracy of automatic segmentation, however their accuracy depends on the availability of a large number of fully segmented images. Methods to train deep neural networks using images for which some, but not all, regions of interest are segmented are necessary to make better use of partially annotated datasets. In this paper, we propose the first axiomatic definition of label-set loss functions that are the loss functions that can handle partially segmented images. We prove that there is one and only one method to convert a classical loss function for fully segmented images into a proper label-set loss function. Our theory also allows us to define the leaf-Dice loss, a label-set generalisation of the Dice loss particularly suited for partial supervision with only missing labels. Using the leaf-Dice loss, we set a new state of the art in partially supervised learning for fetal brain 3D MRI segmentation. We achieve a deep neural network able to segment white matter, ventricles, cerebellum, extra-ventricular CSF, cortical gray matter, deep gray matter, brainstem, and corpus callosum based on fetal brain 3D MRI of anatomically normal fetuses or with open spina bifida. Our implementation of the proposed label-set loss functions is available at https://github.com/LucasFidon/label-set-loss-functions

    Label-Set Loss Functions for Partial Supervision: Application to Fetal Brain 3D MRI Parcellation

    Get PDF
    Deep neural networks have increased the accuracy of automatic segmentation, however their accuracy depends on the availability of a large number of fully segmented images. Methods to train deep neural networks using images for which some, but not all, regions of interest are segmented are necessary to make better use of partially annotated datasets. In this paper, we propose the first axiomatic definition of label-set loss functions that are the loss functions that can handle partially segmented images. We prove that there is one and only one method to convert a classical loss function for fully segmented images into a proper label-set loss function. Our theory also allows us to define the leaf-Dice loss, a label-set generalisation of the Dice loss particularly suited for partial supervision with only missing labels. Using the leaf-Dice loss, we set a new state of the art in partially supervised learning for fetal brain 3D MRI segmentation. We achieve a deep neural network able to segment white matter, ventricles, cerebellum, extra-ventricular CSF, cortical gray matter, deep gray matter, brainstem, and corpus callosum based on fetal brain 3D MRI of anatomically normal fetuses or with open spina bifida. Our implementation of the proposed label-set loss functions is available at https://github.com/LucasFidon/label-set-loss-functions
    corecore